Russian physicists craft revolutionary ceramic-based laser scalpel

Science & Space July 19, 2016, 19:56

The groundbreaking laser converts energy into radiation with an over 50% rate of efficiency, while other types of solid-state lasers have an average efficiency of approximately 20%

MOSCOW, July 19. /TASS/ Scientists from the Moscow Institute of Physics and Technology (MIPT) have developed a ceramic-based laser, according to the institute’s press service. It will be used as a laser scalpel, and also for cutting and engraving composite materials. The results of the study have been published in Optics Letters.

"Ceramics are a promising medium for lasers. They are cheaper and easier to manufacture than single crystals, extremely important for industrial applications. In addition, the chemical composition of ceramics can be easily varied, which in turn alters the laser’s properties," said Ivan Obronov, one of the co-authors of the study and a MIPT researcher.

Laser beams are formed from the effect of stimulated emission in an active medium, which could be a gas, liquid, crystal, or glass. The Russian physicists have used ceramics as an active medium. The groundbreaking laser converts energy into radiation with an over 50% rate of efficiency, while other types of solid-state lasers have an average efficiency of approximately 20%. The ceramic-based laser generates infra-red radiation with a wavelength of about 2 microns.

Laser scalpel - a surgical innovation

It is the wavelength which makes this laser extremely beneficial for medical purposes, as the 2-micron laser allows operations to be conducted at a small depth of around 0.5 mm and does not damage any underlying tissues located below and near the incision. According to developers, surgeons usually apply 2-micron flashlamp-pumped holmium lasers, but these devices are very expensive, relatively bulky, and are not very reliable. "The ceramic-based lasers are cheaper to manufacture, simpler and more reliable, and approximately four times more compact than holmium lasers," - Obronov noted.

Composites in technology

Additionally, the new 2-micron ceramic laser can effectively cut polymers in contrast to the widely used 1-micron lasers for which the polymers are almost transparent. Composites are increasingly being used to produce technological equipment such as aircraft. Ceramic lasers could also be a useful tool for production industries," concludes Obronov.

Read more on the site →